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ABSTRACT

The linear, discrete Kalman filter was analwzed usina a

freeuencv-domain approach. Process and measurement noise

covariances are shown to be critical desirn Parameters which,

to:gether with the assumed Prior state and covariance

estimates, completelw determine the gain schedule of the

linear Kalman filter# Several relevant design technioues are

illustrated and discussed. The concepts of smoothina and

sharpenina are demonstrated* Extensions to adaptive,

non-linear, and non-parametric filtering are brieflv

discussed, as are applications to inventorv management,

estimation of time•-var~ing mean functions, and multiple

rearession.
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.I INTRODUCTION AND SUMMARY

A. DACKGROUND

The Kalman filter is a recursive Bavesian least-sauares

estimator of an n-dimensional swstem state vector based on an

m-dinensional measurement vector. The filter maw operate in

a J-dimensional coordinate svstem where J:1.m, Jhn. The basic

assumption is that each dimension of the coordinate sbstem

v;rs.r. according to a kth order Gauss-Markov Process. The

'ýIman Filter was developed in the earlw 1960's bw Kalman and

-ucv Crefs. 1 and 23.

The Kalman filter maw be used to obtain an optimal

estimate of the Present state, a Prediction of future states,

and/or smoothed estimates of Past states. The current state

estimate is Aenerallw used to determine an optimal control

input. Future state estimates are used to determine optimum

Present Policu, Smoothed Past state estimates are used for

data analvsis and model building* Thus the Potential areas of

application span the field of time series analwsis.

Applications of the Kalman filter are numerous and the

theorv is being continuallw developed and extended. An

overview of the development of linear filtering theorv and an

M extensive biblioaraphv maw be found in Kailath [ref.3J. A

reasonablu clear Presentation of theorv and applications is

contained in Gelb [ref.43.



Perhaps the widest and most successful application of

Kalman filtering has been to vehicle tracking and control*

Clark Eref,5] has written a Particularly lucid description of

the design of a tilter for an anti-aircraft gun fire control

swstem which is noteworthu for its claritw of Presentation of

the underlyina thoory. It is evident rrefs. 4 and 53 that AS

the design Process is heuristic, and reauires extensive

testing and raY...sis of candidate filter confiaurations, even

when the Proceý.s is well-understood and is based on a mature

technolosN.

The Kal ,nn filter has also been applied, with varvina

degrees of success, in economic models, inventorv models, and

even weather models# Considerable difficultv is encountered

in model building, because the filter design reauires good

estimates of the variance and covariance of noise sources, as

well as an accurate state transition model. A Prior estimate

of swstem state and covariance is also reauired, which is

somewhat less critical because errors in the Prior estimate

decrease with time. These Parameters are often difficult to

determine in hiahlw random Processes of auestionable

stationaritw.

The Kalman filter is derived and designed almost entirely

within the time domain, although Clark [ref,5] does refer to

the concept of filter bandwidth. The Kalman f'ilter is

essentiallw a low-pass filter with a verv wide transition

band, and higher-order filters have some amplification at the

mid or low-midfreauencj range* In general, the stop band

does not completelw attenuate high freauencies. This allows

S• ~9



the filter to attenuate high-freauencw noise somewhat while

still retaining some response to sudden changes of state.

B. PURPOSE

The Purpose of this thesis is to acauaint the reader with

the Kalman filter, to show how the choice of various filter

Parameters affect its Performance, and to Provide design

insight through analwsis in the freauencw domain. The

approach is tutorial, and the reader is referred to some of

the interesting examples which maw be found in the

literature.

C. METHOD

The frenuencv response of several simple filter designs

were investigated using the Fast Fourier Transform Program in

the APL Librarw 2. The computer results were Justified

analwtically for the simplest design, a scalar single-state.

filter* Derivations are Presented in appendix A.

D# LEVEL OF PRESENTATION

Full understanding of the theorv reouires a knowledge of

stochastic Processes that evolve over timer as well as an

understanding of digital signal theorw in the freauencv

domain. The Fourier transform is a basic tool. A full

r= exposition of the underlwina theorw is clearlu beyond the

10 A___-~~--
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scope of this Presentation# The reader is directed to Larson

and Shubert Cref.6] for the theorv of stochastic Processes

rand to Hamming rref?7] for the theorw of digital filtering*

As Previouslw mentioned, Gelb Eref.4] and Clark [ref.53 are

good references for the Kalman filter* Bloomfield Cref?8S

and Brillinaer Cref?93 are also applicable references. Brown

CrefolO] and Box and Jenkins Cref?11] contain related

material#

SThere ar'% few readers who are entirelw conversant with

both the freeuencw domain and time domain approach to time

series analwsis° Nevertheless, a dualitv exists between the

two, and a summarv of the theorw is Presented,

Illustrative examples will often be based on tracking

models, because this is Presentlw the widest area of

application of Kalman filters, and bec:ause most readers will

•find the concepts of Position, velocity, and acceleration

easv to understand. The concepts are easilw extendable to

other areas. For example, the economist maw wish to replace

*"velocitv" with *trend'.

E. SUMMARY OF RESULTS

The steadg-state gain, bandwidth, and sensitivitw of the

linear discrete Kalman filter are shown to be completel-a

determined bq the choice of the Process and measurement noise

covariances. Filter Performance on stationarv or

nearlw-stationarw data can be Predicted bv comparing the

freauenc response of the Proposed filter with a spectral

=1



analwsis of the data, The wide transition band of the

amplitude response of the scalar Kalman filter can be

sharpened bw multiple Passes of the data through a

higher-gain filter. This can be accomplished simplw and

recursively. The superioritw of swmmetric smoothing filters

over non-swmmetric filters was demonstrated. When used as a

smoother (bv using both forward and backward Passes) the

Kalman filter was as effective as a non-recursive Gaussian

filter. Higher-order filters were shown to have higher

bandwidth and amplification as the order of the filter was

increased. A freeuencw domain approach to filter design maw

Provide additional insight and enable the designer to achieve

better filter Performance, Particularly when the swstem state

transition model and noise covariance models are not well

understood.

12

!



II. THEORY

A. STOCHASTIC PROCESSES AND STATIONARITY

A continuous stochastic Process X(t) is a Gaussian

Process if tie Probabilitw densities of all orders are

imultivariate Gaussian densities. It is a kth order

Gauss-Markov Process if the state at time t depends onlw on k

earlier states. If we should expand the state space to k

states, which include all derivatives up to the (k-1)th, the

future sustem state vector will depend onlw on the Preýent

state. For example, if the acceleration of a vehicle is a

first-order Gauss-Markov Process, then the Position of the

vehicle is a third-order Gauss-Markov Process. However, if

our state space includes acceleration and velocity as well as

Position, the future state of the swstem is independent of

all but the Present state. If the random acceleration has

zero meant and variance one over one time increment, the

acceleration is a standard Wiener Process W(t). The

derivative of the Wiener Process, written dW(t), has zero

mean, unit variance, and is called white Gaussian noise,

which maw be thought of as a "zero-th order' Gauss-Markov

Process Cref.4].

The standard Wiener Process is not stationary, because

the variance grows linearlw with time. That is, the estimate

of a future state based on the Present state has variance

13



that is a linear function of time* However, the standard

Wiener Process has stationary, independent increments. That

is, the variance at time (t+1) given the state at time (t) is

constant and independent of t.

A stochastic Process X(t) is wide-sense stationarv if and

onlv if it has a constant mean function, and a correlation

function such that Cref.6]

RZ(t, + syt 1 s) R (t,t•) = R (t 1 -ts)

that is, the correlation function of the Process is

independent of an arbitrarw time shift s# A Gaussian Process

is strictlw stationary if and onlv if it is wide-sense

stationary Eref.63.

The Gauss-Markov assumption makes Possible the

development of theorw and applications, because, in Aeneral,

anv linear operation Performed on a Gaussian Process results

in another Gaussian Process, and the Markov Propertw allows

consideration of onlv the Present state, disregarding all

Previous states.

B. THE PHILOSOPHICAL CONCEPT OF STATIONARITY ii
A freauencw-domain analysis of a stochastic Process is

onlu meaningful if the Process is stationary. If the Process

were chat;-ini over timer the spectrum would change over time*

Since the spectrum c~n onlw be analyzed bv means of data

taken over time, such analysis of a non-stationary Process

14



would be meaningless. However, if the Process is

"auasi-stationarv°, that is, it exhibits stationarv

statistics for a while, then undergoes a chanae, then settles

down to stationaritv aaain, the freauencv approach is still

useful, although inaccurate over the transition Period. As

an example, consider an airplane subject to random

accelerations due to air turbulence. An appropriate model

might be a third-order Gauss-Markov Process as long as the

airplane maintains a straight Path or turns at a constant

acceleration. However, the Pilot's inputs to initiate or

terminate a maneuver would result in brief Periods of

non-stationarity, and the model would Perform inadeauatelw

during and immediatelw after the transition Period.

It maw be argued that everv Practical Process can be

considered stationarw over infinite time. If the Process is

random, it represents an ensemble of Possible Paths, of which

anv realization in terms of real-World data is onlw one

Possible Path, and maw or maw not be closelv representative

of the ensemble. When dealing with reality, we are often

forced to assume stationarity in order to make analysis

Possible, and often we obtain good results even though we can

never know whether or not the assumption of stationaritu is

reallw valid.

C. DUALITY OF THE TIME AND FREQUENCY DOMAINS

1. Fourier Series

A very wide class of mathematical functions mab be

15



represented bv the Fourier series Cref,12] as follows*

9(t) = ÷ (acos nt + b. sin nt)

where 0 • t C 2)T+

Existence and convergence of this series representation

reauire onlv that 9(t) be everwwhere single-valued, and

Possess a finite number of maxima, minima, and finite

discontinuities* The function A(t) need not be

differentiable. Anv function meeting the above criteria can

be thought of as a constant mean function ae, plus an

infinite series of sines and cosines of integral freauencies

and various amplitudes. Of courser the independent variable

t must be shifted and scaled to the interval C O,2lr3, Note

that the lowest freauencw present, aside from the

zero-freauencu mean, is one cucle for the span of 9(t),

Among the functions meeting the criteria are a souare pulse,

an impulse, and anv manifestation of a random walk. In

Practice, the Fourier analwsis of a function a(t) reauires

the truncation of the infinite Fourier series# This results

S~in a smooth least-souares approximation to the function g(t)+

CA There are ripples in the approximation if the function 9(t)

R is not differentiable or if the truncation is too severe.

This is known as the Gibbs phenomenon, and is illustrated in

figure 1, which was taken from Hamming Cref?7]. Bv taking a

sufficient number of terms in the Fourier expansion, we can

improve the closeness of the approximation#

16
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Figure 1. The Gibbs Phenomenon

2. Basic Concept

The basic concept of the dualitw between the time and

freauencw domains is so simple that it often gets lost in a

forest of Fourier transforms. The time Period is the

reciprocal of freauency, The basic relationship is
44M

v/2Tr =f l/T

where v is the freauencu in radians/unit time, f is the

freauencv in cwcles/unit time, and T is the time Period for

one cvcle. Stated simplv, freauencv is the inverse of the

time Period.

3. Discrete Data and the Sampling Theorem

The digital computer allows the efficient analysis of

continuous Phenomena bv means of discrete approximations+ We

saw earlier that the lowest freauencw contained in a Fourier

expansion of a function a(t) was the reciprocal of the time

span covered by the function* Similarly, the famous Sampling

Theorem Crefs. 6 and 73 states that if a function a(t) in

continuous time is sampled at constant, discrete time

17



intervals Lt (that is, at a rate of It/t), then the highest

observable freauencw is 0.5 cwcles Per measurement interval

Lt. This means that at least two observations are renuired in

each cwcle in order to observe that Particular freauencv.

The freauenc 0.5/Lt, usuallw written simply 0.5, is

referred to as the Nwouist freauencw. The result is the

aliasinr Phenomenon, which is familiar to most moviegoers.

During the chase, the stagecoach wheels appear to stop or

rotate slowlw backwards when the rate of rotation of the

wheel spokes (spokes/sec) exceeds 1/2 the camera rate

(frames/sec). When higher freauencies exist in the function

0(t) sampled at a rate Lt, thew are folded back and appear in

the freauencv spectrum of the sampled data as freauencies

less than the Nwouist freauencw. The sampling theorem shows

-• that a spectral analysis of discrete data is onlw meaningful

over the Nwouist interval E -0.5/Lt, +0.5/Lt].

4. The Discrete Fourier Transform

Anu function 0(t) for which a convergent Fourier

series exists maw be represented in the frenuencw domain in

terms of real and imaginarv Parts, or in terms of amplitude

and Phase angle, as a function of freauencw, It should be

noted that the function g(t) maw also be complex-valued, but

we will deal with onlv real-valued functions. In the

continuous domain, the formulas

• (t) (v) exp(ivt) dv

and

18



ONv) = (t) exp(-ivt) dt

represent a Fourier transform Pair. The freauencv response

G(v completelv determines the time function A(t) and

converselv.

If the function 9(t) is sappled at intervals t

O01,2,...,n the time-to-frenuencj transformation becomes

G(v) = 7 (t) exp(-ivt) t = Os'l,o.9,nS•tOo

which is defined onlw on the Nwouist interval C-7T,ro], here

defined in radians. The formula mav be written in a more

familiar form bv using the Euler relation

exp(-ivt) cos vt - i sin vt

as

G(v) =Z It (cos vt - i sin vt)

which is continuous in v on the interval i-Irln] The Fourier

transform is a bit difficult to handle analwticallv for all

but the simplest functions, but the discrete Fourier

transform is lenerallv easw to compute bv use of a Fast

Fourier Transform (FFT) Program available in most computer

libraries. The output will aenerallv be a verv close discrete

approximation to G(v), if the span of 4(t) is large enough.

The inverse transformation can also be made.

19



Since G(v) is complex valued whenever the function A(t)

is not swmmetric, it is often useful to represent it in terms

of amplitude and phase. The amplitude is

JG(v0 /GTvGTv) = /Re(v)31+ [Irn(v)Ja

where Re(v) and Im(v) are the real and imaginarv Parts of

G(v). The Phase angle is

8(v) arctan Im(v) / Re(v)

D. THE DOOB-MEYER-FISK DECOMPOSITION

In most Practical applicatiorosp a finite-variance

sample-continuous stochastic Process X(t) can be written

X(T) X(O) + JA(t)dt + fB(t)dW(t)

where X(O) is the initial value of that Process, A(t)dt is

predictable, smooth behavior determined by a set of

deterministic differential eauations describing the sgstem,

and B(t)dW(t) is noise, where dW(t) is white Gaussian noise,

and B(t) is a smooth transformation that is sometimes thought

of as "colorinA" the noise. Such a representation is called

the Doob-Mewer-Fisk decomposition [ref.6], which mav be

thought of as separating the Process into a signal and noise.

Several important Points must be made with regard to this

20
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eauation, It is not intended here that the expression be

evaluated analwticallw. The integral B(t)dW(t) is an Itt

integral, which is not even a stochastic version of a

StieltJes integral Cref.6]. Also, although the Processes

A(t) and B(t) are smooth functions that maw be considered

deterministic representations of sustem behavior, thew are

not necessarilw known to the observer, even when an adenuate

technological representation exists.

Consider again our Piloted aircraft being tracked bw a

radar. The Process A(t) represents the dynamics of the

airframe, as affected bv the control inputs of the Pilot,

which are unknown to the radar observer. The Process B(t)

consists of several Parts. One is the measurement Process,

which maw or maw not be known to the radar observer. For

example, a nutatind radar antenna might impose some Periodic

error in the measurement, which would be manifested in the

Process B(t). Overlaid on this might be a white Gaussian

noise measurement error. Air turbulence could also be

represented as white Gaussian noise, which, howevery could

onlu be manifested through deterministic airplane dynamics,

There are those who would argue that the Pilot should also be

modelled as a random variable. In anu event, the Process

B(t) might be further decomposed into several Processes, here

at least airframe response to air turbulence and Periodic

radar antenna dynamics.

The vital observation is that if the freauencw content of

the Processes AMt) and B(t) are known to be different, thew

can be Partially separated by a spectral analwsis of the

21



data. In our example, aircraft have natural d~namic response

freauencies in all control axes. These can be estimaiýed

closelw, even for enemw airplanes, and are Aenerallw similar

among similar tvpes of airplanes, although thev varv with
airspeed# It is Phvsieallw impossible for the airplane to

respond faster than its highest natural dynamic freeuencies..

Any freauencw content higher than this must be noise. If the

radar svstem dwrnamics are of a higher freeuencw than this,

they can also be separated. The Pilot will take advantage of
the full response rate of the airplane onli verw rarely.

Therefore, low freauencw components are most likelq due to

SPilot maneuvers. Of course, since white Gaussian noise has

a flat freauencw spectrum as a result of aliasing [ref°7], it

is impossible to separate all of the noise from the signal.

However, it is often Possible to remove ouite r bit of it.

E. DIGITAL FILTERS

A digital filter is a linear transformation applied

iterativelw to a set of data Points. The surPose here is to

separate noise from the signal. The simplest digital filter

is the simple average, which estimates the mean value from

the data, and smooths out all fluctuations. The most Aeneral

form of the digital filter was stated by Hammini Cref.7] as

2 -
x(t) •a(k) z(t-k) + £b(k) x(t-k)

where the estimate x(t) at some Point t is a linear

22



combination of the data Points z(t-k), and Perhaps of the

Previous estimates x(t-k)* The coefficients a(k) and b(k)

are weighting coefficients and maw, of course, be zero, As a

result of the sampling theorem, the filtering Process is

meaningless unless the measurements z(t-k) are made at

__ eauallu spaced intervals along the t axis, where t is

usuallw, but not necessarilv, time.

1. Some Classifications of Digital Filters

Digital filters maw be classified as swmmetric or

non-symmetric, and as recursive or non-recursive. A

swmmetric non-recursive filter is one in which all b(k) eaual

zero and all a(k) = a(-k), such as the filter

x(t) = 0.2 z(t-1) + 0,6 z~t) + 0.2 z(t+I).

An example of a recursive filter is

x(t) = a z(t) + b x(t-1) O<a<l, b = 1-a

which is not summetric, This Particular filter maw be

expressed 
as

.x(t) a z(t) + bt a z(t-1) + bC a z(t-2) + .... ]]

which reduces to

x(t) = a z(t) + ab z(t-1) + ab z(t-2) +...+ ab z(t-n) +..

23
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The recursive filter extends to the infinite Past, although

the coefficients ab" will approach zero, if Ib|<l. In this

case, a recursive filter can be closelw approximated b,,,

non-recursive filter. A Primary advantage of the recurve,,<

filter is that old data need not be stored. New estimates

maw be computed simply and rapidly as time evolves. This is

an important advantage for real-time applications.

2. Applications of Digital Filters V

tDigital filters are used to separate a signal from

noise, to separate various freauencw components of a signal,

and/or to Perform such mathematical functions as integration

and differentiation. A review of Simpson's rule and the

Trapezoidal rule should convince the reader that these

numerical irteqration technioues are, in fact, recursive

digital filters, Sometimes a filter has two Purposes. For

example, it might be desirable, n estimating velocity from

successive observations of Position, to simultaneously

differentiate and remove high freauencu noise. When a filter

is used to stop Part of the freauencv spectrum, it is

referred to as a *low-passl, $high-pass', lband-pass', or

Oband-stopO filter, depending on its function.

3. Analysis of Digital Filters

In the time domain, a digital filter is described

completely bw its impulse response function, which is nothing

2 4



moru than the response of the filter to data consisting of a

string of zeros, a single one, followed by zeros, The output

of the filter is then simplw the weighting coefficients a(k)+

If the filter is recursive, we might not be able to deduce

t he recursive form from the coefficients a(k), but that will

iiot concern us here. The Fourier transform of the

impulse-response function

N
H(V) Z'a(k) exp,(-ivk)

will completelw specify the freeuencw response of the filter*

If the filter is symmetric, there s1ill be no imaginarv Part,

and hence no Phase shift# If the filter is recursive, it

cannot Practically be symmetric, and the summation will

generallv run from zero to infinity. That is, the impulse

response will extend infinitely far into the future, which

means that the filter remembers all of the Past*

The dualitv of the time and frenuencw domains allows us

to specifw a desired freauencv response and to design an

appropriate filter by calculating filter weights, or to

analyze an existing filter bw calculating the freauencw

response from the filter weighting coefficients*

F. DATA ANALYSIS AND EXPERIMENT DESIGN

No digital filter should be applied to data anal9sis

without a clear idez of the effect of the filter upon the

data. Slutskw and Yule first noted that some smoothingLI 25



formulas induced Periodic functions in the smoothed estimate

that were more the effect of smoothing than of the original

data tref.7]. A spectral analysis of representative raw data

can be helpful in deciding on an appropriate filtering

techninue. However, such data as economic time series or

weather data are twpically verv noisv, are based on a

relatively short run of data, and cannot be described by an

adeauate technological model, The analyst must be aware of

these Problems. Sometimes there are no good solutions, but a

spectral representation maw Produce freauencies that can be

explained on rational arounds*

Another Potential Pitfall is a result of the sampling

theorem. Consider the timelw example of an air Pollution

model. It would be reaonable to suspect that air Pollution

would follow at least a daily cycle, or Perhaps an eight hour

cwcle if morning and evening rush hours were considered.

Daily samples of air Pollution could not hope to uncover

cycles of a shorter Period than -verv two days. SamPles

everv four hours would be marginallw adeauate, Hourly

samples would be necessarv for a good analgsis, Additionally,

recall the renuirement for eauallw-spacbd sampling intervals.

For various reasons, the analyst maw have no control over

data collection. However, he must always understand what has

been doner or could have been done, to the data, as well as

what he is doing to it, in order to avoid erroneous

conclusions.

A*
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III* THE LINEAR DISCRETE KALMAN FILTER

A. DESCRIPTION

The linear discrete Kalman filter is a recursive Bayesian

least-souares estimator of the state vector of a linear

swstem based on a vector of noisw measurements made at

discrete time intervals. The Process to be estimated is

assumed to be an n-state Gauss-Markov Process of order k,

subject to Process noise W with zero mean and covariance

matrix 0. The Process is observed bv an m-dimensional

measurement, subject to measurement noise V (not to be

confused with freauencw (v)) with zero mean and covariance

matrix R. The filter reauires a Prior Bayesian estimate of

swstem state and covariance. The recursive estimate of swstem

state at time t is obtained bw the formula

X(t~t)= X(tit-1) + K(t)[Z(t)-HX(tlt-1)]

where

X(t~t) state estimate based on current measurement

Z(t) current measurement

X(tit-1) state estimate Prior to current measurement

K(t) Kalman gain matrix (to be discussed later)

H observation matrix, which is constant

The derivation of the Kalman filter enuations ma• be

27
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found in Gelb tref.4]. A summarv of the filter eauations is

Presented in figure 2, which should be consulted in order to

follous the subseauent discussion. V

In leneral, the state model represents a dwnamic system,

that is, one which changes with time. The extrapolation of

the state estimate to the time of thi next observation is

obtained by the formula:*

X(t+llt) = j X(tit)

aONG

where I is the state transition matrix. The observation

Process occurs according to the conceptual relation

Z(t) = HX(t) + V

where X(t) is the true svstem state. observed through the

observation matrix H, and V represents measurement noise,

which is assumed to be a Gaussian random variable with zero

mean and covariance matrix R. Note that the Process

represented bw this formula is assumed to occur in the real

world. The computation does not occur in the filter. Rather,

the measurement Z(t) is an input to the filter.

In the linear Kalman filter, the gain K(t) does not

depend in anw wav on the data. It depends onlw on the model,

and is therefore extremelw sensitive to assumptions. Gain is

calculated according to the formula

K(t) = P(tH HP(t)H + R;

28
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where P(t) is the covariance in the swstem state estimate

prior to the current measurement and R is the covariance of

the measurement error. The covariance is updated accordinrs

to the formula

t(t) = tI-K(t)H] P(t)

where X(t) is the state covariance aiven the current

measurement, and I is the identitw matrix. The covariance is

extrapolated to the time immediately Prior 0 e next

observation bw the formula

P(t+l) = 2 .(t) j + Q

where j is the state transition matrix and Q is the

covariance of the Process noise. Combinind the above two

eauations shows that the covariance of the state estimate at

the time of the current measurement depends on the Previous

covariance accordina to the formula

T0Vt) = EI-K~t)HJ E[ Z(t-1) JT+ Q3

Filter Performance is verv dependent on adeouate

modelling, Particularlw on the state transition model f and

the choice of noise covariances R and Q. To a lesser extenty

Performance also depends on the initial estimates of system

state X(1:O) and covariance P(1:0). However, the latter

Parameters are less important because their effects decrease

30
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with time. If the matrices R, Q, S, and H are constant in rRi

time, the aain K(t) and covariance matrices 1(t) and P(t)

eventuallw reach a steadq stater and are completelv

determined bw R, O, j, and H.

For a aiven linear filter, it will be shown that filter

gain, covariance, and freauencw response will be completely

determined bv the choice of R and U.

B. THE SCALAR KALMAN FILTER

The multi-state Kalman filter is a Powerful computational

device. However, it is difficult and often impossible to

manipulate in closed form because of the freauent occurence

of sinigular matrices. An analysis of a single-state (scalar)

filter can be used to illustrate the mechanics of the Kalman

filter, and to aid in developinz an intu'tive understanding.

In the discussion that follows, it is assumed that all

1 itrices are scalars, and, in particular, Q and H eaual one.

Matrix notation is Preserved for clarity, Derivations maw be

found in appendix A.

1. Transient and Steady-State Gain

It can be shown (appendix A) that the scalar Kalman

aain can be expressed recursively as

K(t) : K(t-1) + Q/R
K(t-h) + f/R + 1

When the filter reaches steady-state, the Aain is constant



and

2R 44R' R

The inverse relationship is

R 1-K

Thusy the variance ratio Q/R, which is the ratio of Process

noise variance to measurement noise variance, completelv

determines the steady-state aain° The steadw-state filter is

comPletelq described bv the formula

X(t) = K Z(t) + (I-K) X(t-1)

S2+ Freauencq Response

Lettina K = a and (1-K) = bp the impulse-response

function G(t) mav be written

(Gt) = ab P t=0,1,2,°°,°°

®The Fourier Tr3nsform is

1H(v) G(t) exP (-ivt)dt

aH(v) / a b exp(-iv)]

H~v) =a /1- b ex(-iv)
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Since the filter is not symmetric, the freauencw response

H(v) has both real and imaminarv Parts* The amplitude maw be

written

A IH(v)I = JH(v)H(-v) a / i + b9-2b cos v

which reduces to
A =1 + _/R

2(1 -cos v)

The Phase angle maw be written

8(v) arctan b sin v
(1'--b cos v

The angle for maximum Phase shift is

v(max 8) arccos b = arccos (1-K)

v (max 8) arccos (1 + 0/2R -- -Q/4R+Q/R

Therefore, the variance ratio Q/R also completelw specifies

the steadv-state freauencw response of the filter. Amplitude

and Phase relationship for several values of gain are Plotted

in figures 3 and 4#

It is evident that high Q/R (high gain) reduces the Phase

lag of the filter but allows more of the hiah-freauencw

components to Pass. Converselw, low Q/R (low gain)

attenuates more of the high-freauencw components, at the

e;,Pense of an increased Phase lag. Notp that even at very

I
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low aain (low G/R) not all of the hiah-freauencw component is

attenuated, and the Phase laa is Quite severe. The slope of

the amplitude chanae is Quite shallow, implina that

attenuation increases araduallg as frenuencY increases. This

is a conseouence of the assumptions and Performance will not

be adequate if the data does not represent a Gauss-Markov

Process, but in fact represents some Phenomena chanaina with

time,

C. IMPROVING THE FILTER

The transition band of the filter can be sharpenedr and

more of the high- freauencY components eliminated, bw runninq

the data through two filters in series. The basic scalar

4 filter was

x(t) = a z(t) + b x(t-1)

where a K and b (1-K), Runnina the data through the

filter asain, we obtain a new estimate q(t) , where

w(t) = a x(t) + b w(t-1)

It should be evident that we can accomplish this all in one

step as

W(t) a z(t) + 2b w(t-l) -b w(t-2)
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We need onlw to save one additional Previous estimate w(t-2)

as well as w(t-1). The impulse response function is

1 (t) =(t+l)a2b•, t =0,1,+*.

We have Performed a convolution in the time domain, which

corresponds to a multiplication in the frenuencw domain.

This maw not be exactlv what we want. Let us suppose that we

want the weighting coefficient for the Present data Point

z(t) to be 0#27 in both cases, This reouires a = 0.27 for

the basic filter and a = = 0.52 for the double filter.

The impulse response function for both filters is Presented

in figure 5. Note that the double filter forgets the Past

more readilv. The amplitude and Phase shift for both filters

is Presented in figures 6 and 7. The gain for the scalar

filter was 0.27, corresponding to a variance ratio (G/R) of

0.1. Also (note that the double filter has somewhat better

4 hiah-freauencw attenuation, somewhat less attenuation at low

freauencies, and a slightlw sharper (steeper) transition* We

would therefore expect it to be a bit better at separating a

low-freauencw signal from noise, At low freauencies, the

double filter has less Phase shift. However, Phase shift is

more severe at freauencies above 0.5 radians.

D. PERFORMANCE COMPARISON

The basic scalar filter and the improved (double) filter

7 A3
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were compared using the data illustrated in figure 8. A

series of independent normal random numbers with zero mean

and variance ten were aenerated, to simulate measurement

noise# Thew were added to a nominal function which was a
• ~combination of steps and a ramp# The ramp function rises I

unit each measurement interval, which corresp~onds to one

standard deviation in Process noise O, so at least during the

"ramp function, the data corresponds to the filter design

variance ratio Q/R = 0.1. A spectral analysis of the data is

Presented in figure 9. The signal and noise are Presented

separatelv and in combination. Note that the noise-onlv scale

is e:<,anded, The noise spectrum is irregular, but overall

Quite flat. The signal consists mostly of verg low

freauencies, b.-t also has some high frequencies, This would

be expected, since step and ramp functions reauire verw high

frequencies in their Fourier expansion. The hiah-freauencw

signal is submerged in noise. The data, of course, does not

fulfil the assumptions from which the Kalman filter is

derived, However, the real world seldom does either. We are

looking for robustness.

The filters were first tested on the signal alone. The

results are Presented in figure 10. It can be seen that

neither filter can respond instantaneously to the

discontinuities in the function, since high frequencies are

attenuated* Both filters lag after discontinuities and

during the ramp rise. This is a conseauence of the non-

symmetric nature of the filters and illustrates the Phase

lag. Note that the double filter Performs a bit better,

-~41.
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remaining closer to the data throughout (it is a Peculiaritv

of the Plotting routine that onlw one svmbol will be plotted

when ever data points coincide. Therefore, data Points that

do not appear should be regarded as occurring simultaneouslw

with the ones that do appear).

The filters were then tested on the noisv data. The

results are Presented in figures 11 and 12. The latter Plot

has the data suppressed so that the scale can be increased

and more resolution obtained.

The same trends can be observed as were Previouslw. The

double filter lags less during the trend and transitions.

The double filter appears to follow the noise a bit more

closelv, but overall it follows the signal better than the

basic filter. The average variance between the signal and the

filter was 4.20 for the double filter and 5#10 for the basic

filter, which was an 18% improvement for this simple

modification. The improvement is due to the fact that the

double filter weights more recent, data more heavily, and

remembers less of the Past than the scalar Kalman filter,

even though the weight on the Present observation is the

same+

This simple experiment is onlv intended to acauaint the

reader with Possible improvements to the Kalman filter. Like

anw tool, the Kalman filter should not be applied

indiscriminantlw+ The interested reader is referred to

Hamming Cref.73 for the basic Principles of digital filter

design.
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E. THE TRANSIENT CASE

The sophisticated reader has no doubt noticed that the

steadv-state scalar Kalman filter is eauivalent to the

Box-Jenkins IMA(O,1v) model Eref.1ii and to Brown's

exponential smoothing model Cref.103# Zehna criticized the

exponential smoothing model Cref.133, noting the bias would

occur if the steady-state model was applied with an

inappropriate Prior estimate. Bessler and Zehna £ref.14]

developed a gain schedule which theq call finite exponential

smoothing. Their formula for gain is

a(t) a/(1-bt)

where a is the steadw state aain, b = (1-a), and a(t) is the

gain schedule as a function of time. It is similar to the

Kalman gain schedule if the initial Kalman -ain K(O) is

chosen as one. In both models, no Prior estimate is

reauired. The weight on the first observation is one. A

comparison of the two models is illustrated in figure 13P for

a steadw-state gain of 0.2 and an initial gain of 1. The

Kalman gain was calculated according to the recursive formula

in section III.A.

The Kalman filter gain converges faster, although the

difference is not Areat* The scalar Kalman filter Possesses

two other advantages over the finite exponential smoothing

technioue. First, if a good Prior estimate does exist, the.
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Kalman filter allows the initial gain to be chosen as less

than one, and its value will be determined bw the assumed

covariance of the Prior estimate. Also, the Kalman model A
forces the analvst to at least ink about the concepts of

measurement noise and Process noise, and to estimate the
noise variance ratio Q/R.

As noted before, a freauencw analvsis of the transient

case is not appropriate. However, it can be thought of as a

case of transient bandwidt.h. The filter is initiallw set to a

higher gain than steady-state gains If there is no Prior

estimate available, the initial gain is one, and the filter

is initially an infinite-bandwidth or all-pass %Iter. As

data are acouired gain drops and the bandwidth rarpows until

steadg-state conditions are achieved* The concept of

transient bandwidth is important to the subject of adaptive

filteringr to which we will return.

F. HIGHER ORDER FILTERS

The main beautv of the Kalman filter is not in its

statistically unbiased method of calculating 0ain, but in its

Powerful matrix formulation, which allows it to be applied as

a multi-dimensional model incorporating anw order of

differencina desired. As the state space is increased, it

QuicklW becomes impossible to analyze the filter

analutically, High-order multi-dimension filters can also

easily exceed the capacitu of Present digital computers for

real-time applications# Fortunatalw, it has been found that
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the state space can be reduced and dimensions decoupled with

verv little degradation in the overall accuracw of the state

estimate [refs. 4 and 53* For example, if a 12-state model

can be reduced to 9 states and can be adeauatelw represented

bv three 3-state models, the matrix calculations can be

considerablv simplified and speeded uP,

We will examine a second-order (first difference)

filter, which can be used to estimate trendy or velocitv. We

will use the latter term. Position and velocitv are to be

estimated b.,sed onlw on successive measurements of Position.

The state transition and the observation matrices are

H El 01

The covariance matrices I, P, and Q are, of course, 2 by

2 matrices. The state vector has two elements, velocitw and

Position, while the measurement vector has onlw Position.

The measurement error R is a I by I matrix which we will

vary. We have chosen Q as

0'

arguing that anw Process noise will be contained entirely in

velocity. That is? there can be no random motion that is not

caused by a random velocity, Randomness of velocitv will feed

into Position through the state transition matrix.

V#



Even in this simple case, solving analytically for

steadw-state sain in terms of R and Q reauires solving a

swstem of 4th order Polynomial eauations. We will opt

instead for a computer solution. The reader maw continue to

think in terms of the noise variance ratio, where R will take

on the values 1, 10, 100 and Q will remain constant as above.

Since there is onlv one non-zero term in the Q matrixt we may

think of the noise variance ratio as the scalar nuantity

Q(2;2)/R# The resulting steady-state sains are

Noise Variance Position Velocity

Ratio Gain Gain

1.0 .769 .481

0.1 .553 .211

0.01 .362 .080

As would be expected, the Position gain is much higher

than that of a scalar filter at an enuivalent noise variance

ratio, because the Process variation now applies to velocitq

rather than Position. The velocity gain is considerably less

than the Position gain, since the velocity is /not measured

directly but must oe estimated from successiv4 measurements

of Position# The imp.ilse-response function of the medium-gain

filter (noise variance ratio 0.1) is Presented in figure 14.

The amplitude response of these three filters is

compared in figures 15 and 16. The most striking feature is

the amplification which occurs at a specific frenuencv in the

Position freauencw response, This implies that the filter is
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most sensitive to motion in a particular frenuencq ranrae.

"rhus, the natural freauencw of the svstem to be observed, if

it is known, is a significant design Parameter. Alain, we

observe the attenuation of high-frenuencw noise, although a

significant amount still remains at the maximum freeuencV

(note that figure 16 does not include the oriain)M

The freauencu response of velocitv shows a reduction in

amplitude at low frenuencv. The amplitude at zero freauencA

is ecual to the velocitv gain* This is far from ideal

Performance for a differentiator, which should have an

amplitude response of zero at zero freauencv? with a slope of

one up to the cutoff freauenc= Cref.73. The differentiator

is, however, reasonablv effective at reducing the amplitude ]

of hiah-freauencw components.

The Phase shift of the filters again shows increasing

Phase lag as gain is decreased. The overall effect is

similar to the scalar filter, and is otherwise unremarkable*

Therefore, Plots are not included.

The data of figure 8 was tested on the lowest-sain

velocitv filter# Note that the spectral content of the data

(figure 9) is ouito low-freauency:, and that the bandwidth of

the lowest gain velocitv filter is Quite wide, and indeed Is

higher than that of our scalar filter. So it m~ight be

expected that the velocitv filter would have some trouble

with the data.

The velocitv filter Performance on the nominal function

onlw is Presented in figure 17. The filter overshoots Quite

badlw at the discontinuous steps, which, of courser are an
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impulse in velocity. The overshoot is less at the start and

stop of the trend. It does settle down and track the trend

without lag, which is an improvement in Performance over the

scalar filter. It should be noted that with higher aain, the

filter would track the nominal data better, while with lower

aain, the overshoots would be more severe.

The Performance of the velocitq filter on the 'ita is

illustrated in figure 18. As expected, the filter tends to

follow the noise too much. However, it does follow the

discontinuities much more ouicklv than the scalar filter.

This Points out the fact that the hiaher-order filter is more

effective as a maneuver detector but it is less suitable for

smoothing verv noisy data. This again illustrates the

concept of bandwidth, which is ouite high even in the

low-gain velocitv filter.

In retrospect, the decision to choose Q(1;1) as zero mav

not have been wise# Allowing some Process noise in position,

exclusive of velocity, could well have some smoothing effect

on the velocitw estimate, which would result in smoother

one-period ahead Predictions. This could smooth the

operation of the filter a bit* The Possible combinations of

filter Parameters, even for this simple filter, are ouite

numerous.

The frenuencv response of a second-difference

(acceleration) filter was also determined for comparison.

The results are Presented in figure 19. The 0 matrix was

zero except for Q(3;3)y which was one. R was chnsen as 10,

resulting in 3 nominal noise variance ratio of 0.1. Again,
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the gain was higher than that of a velocity filter with an

etuivalent noise variance ratio# The amplification of

low-freauencv components of Position was increased, and the

zero-freauencw amplitudes of velocitv and acceleration again

corresponded to filter gain*
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FREQUENCY RESPONSE OF ACCZLCRATIOX FILTER
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IV. ESTIMATION, SMOOTHING, AND PREDICTION

•* ESTIMATION

So fart we have been concerned onlw with estimation of

the Present state. A filter designed to Provide such an

estimate cannot be svmmetric, because it can Put no weight on

future observations. Thus, Phase lag is inevitable, and is

one of the Parameters that should be considered in the design

Process.

B0 SMOOTHING

Smoothing is the use of a filter to Provide an estimate

of Past states. Such a filter can be made svmmetric, which

completelv eliminates the Phase lag* Non-recursive smoothing

filters cause a loss of N data Points at each end of the

data, where the span of the filter is (-N, N). Z

The Kalman filter can be used as a smoother bv simplw

running the forward estimate through the filter in the

opposite direction. The impulse response function of the

scalar filter was

_1(t) = abA

It can be shown (appendix A) that the impulse response



function of the smoother (forward and backward filters

combined) is

G(t) = ab 1/(1+b)

which is just the convolution

g(t) q (-t)

The Kalman filter is able to Provide an estimate

throughout the span of the data. No data is lost at either

end. However, due to transient effects, the data near either

end is subject to Phase shift and some increase in aain. The

filter is necessarilv not swmmetric near each end of the data

span.

Gelb Cref.4] includes a complete discussion of

fixed-point, fixed-lal, and fixed-interval smoothing. We

will restrict our attention to the scalar, fixed-interval,

steadv-state case, ignoring the end effects.

The scalar Kalman filter of section III.D (noise

variance ratio of 0.1, gain of 0.27) was used as a smoother

on the data of figure 8. The results are Presented in

figure 20. As compared to the one-pass Performance as

illustrated in figure 12, the smoothed data shows Phase lag

removed and Peaks in the oscillations reduced. However, the

smoother has less abilitv to follow the discontinuities in

the nominal function. The removal of the Phase lag is

V characteristic of anw svmmetric filter. However, the reduced

L- 63k c
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abilittj to follow the discontinuities is the result of

reduced effective lain. Since we have convolved the filter

weights, we have snuared the amplitude of the freauencI

response. The weight on the data Point at (t=0) is reduced.

The effective gain was 0#27 for the forward filter, and 0.156

for the smoothing filter* This reduction in effective gain

is not addressed in the literature on the Kalman filter, and

it is unclear how smoother gain should be chosen in relation

to the noise variance ratio Q/R,

C. A COMPARISON OF TWO SMOOTHERS

The Kalman smoother of the Previous section was compared

with a Gaussian smoother to illustrate some design options

a• and Procedures. The Gaussian smoother was chosen from among

a huge varietv of data windows because it has good smoothing

Propertibs, and because it is Particularlw easv to design.

Interestingly, preliminarv experiments showed repetitive

applications of a Kalman filter to result in an approximately

Gaussian filter weight distribution. A comparison of the

Gaussian smoother to a variety of other windows is contained

in Harris [ref.15].

The Gaussian smoother is a swmmetric filter with the

weisihts chosen according to a discretized and truncated 3I
normal distribution. The .formula is

g(t) K exp(-t /2o-)



whore t is an integer on the range (-N, N) and K is dhosenM

such that

@ (t) =1IFI

The ease of design comes from the observation that the

Fourier transform of the continuous Normal distribution is

also a Normal distribution with scale Parameter (variance)

enual to i/a, As long as (4 > 2) and truncation is not more

severe than INI > 26v a reasonable approximation of thu

freauencu response for the Gaussian digital filter is

aG(v) Z exp (-COv /2)

The scale parameter was chosen such that the frenuencv

response was eaual at (v = 0.5). Skipping the algebraic

details, this reauired (C'= 3.11). The Gaussian smoother was

truncated to (N = 7), resulting in a filter span of 15 data

points. The freauencw response of both filters is presented

in figure 21, and the filter weighting coefficients are

presented in figure 22.

Since we truncated the Gaussian smoother, we would

expect some ripples in the tail of the frenuencw response,

which are Just barelY visible in figure 21. The Gaussian

filter has a sharper transition band, and is Quite effective

in blocking high freauencies° As compared to the Kalman

smoother, the Gaussian filter weights the Present data Point

66



Nw -AA

i••Ff.IEflfNCY RESFOHSIE aF 5XlIOLE ftla OUILC FIZLTERS

1.08

• I_. .74

i•0 o961 r

I.I
I 0.84'-- .1

I J.3

0.721-- J.

I-

I .3

0.60 1_

cGAUSSXAN SMOOTHER4

I T

T

S0.241- +A
32+I 1

T I L

-A 0.021 -_- + +

SI I

"• .1 1 +1-I- -I.

L. + +i..3

j ±-... T" TT+ """"+++++±.LJ.J.. .L. .L.LJ..L.LJ..L.

S0.,001 ........ I 1....... I -'rTT ,'+.L.__ +++a.___.a.-±± ,.a.___.±-..a.L. .LL.....• .....a.__L -. _ I......... I
0.0 0.5 1. 1.5 2.0 2,5 3.0 3.5

SFIGURE 21

67



FILT'ER WEzGHTs

0$168 -

0. 144 I....

0.1201--..

a a

0KA~LMAN SMOOTHER
0.0961.....a 0GAUSSIAN SMOOTHEft

0*0721-...

090481--..

0#0241--

I1 0

-15 -10 -5 0 5 10 1s

IIGURE 22

68



less, nearbv data Points m.ore and farther daLa Points less.

The Performance of the Caussian smoother on the data of

figure 8 is Presented in figure 23. A comparison of the

Kalman and Gaussian smoothers is Presented in figures Z4 and

25. In figure 24, the smoothers are applied onlw to the

nominal function. It can be seern that the Gaussian smoother

followea the discontinuities and corners of the nominal

function better than the Kalman smoother. However, when the

smoothers were applied to the noisv data, the results were

less clear (figure 25). The Gaussian smoother again followed

the nominal function a bit better, but it also followed

low-freauencw components of the noise a ibit more, tending to

emphasize cvclic effects that aren't reallw there, The mean

sauare difference between the smoothed estimate and the

nominal function were verv similar, 1.81 for the Gaussian

smoother and 1.84 for the Kalman smoother# Thus, the Kalman

filter seems Quite effective when used as a smoother. TheI reader is reminded that the mean snuare difference for the

scalar Kalman filter was 5.1, which clearlv indicates the

superioritv of smoothing over filtering.

D. PREDICTION

Prediction is difficult. Recall that a stochastic

Process is an ensemble of Possible Paths, while data is the

manifestation of one member of that ensemble. What could

have happened did, but what can happen isn't necessarilv

going to. Prediction can be thought of as filtering without
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measurements, and the estimate is Projected forward in time

through the state transition model. Filtered or smoothed

estimates may be Quite accurate, even if the state transition

model is not. However, good Predictions are heavilw

dependent on an accurate state transition model.

The hiaher-order Kalman filters are Polynomial models.

Hamming has Pointed out that Polvnomial models are Poor

Predictors, since the estimate tends to veer off to Plus or

minus infinitw as soon as the model is released from the data 3i

Cref.7]. There is no reauirement to use the same model for

Prediction as for filtering. For example, it might make sense

to track a target with an acceleration filter, but to compute

fire control information based on a constant-velocity model,

since target acceleration is generallw assumed random with

zero mean. Similarly, the economist maw desire to filter

data with a high-order model, but make Predictions based on

constant trend. Clark Cref.5] discusses a somewhat more

sophisticated method due to Singer, in which the model decavs

from an acceleration Predictor to a constant-velocitv

Predictor as Prediction time increases. Such techninues are

heuristic in nature, but can Prove valuable to the innovative

analyst,

An interestina example of the above concept can be found

in Box and Jenkins Eref.ll]. Thew compared a Quadratic

forecast due to Brown [ref10O3 with their own IMA(OIl)

modcl with a gain of 0.9. The latter model is eauivalent to

the steadw-state scalar Kalman filter. Tij data used for the

comparison was a time series of IBM stock Prices. Box and
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Jenkins observed thaty while the nuadratic model might well

be used to fit the data, its Performance as a Predictor was

clearlw inferior to the simpler IMA(OII) model. This is

riot surprising, siy-.e it has long been suggested that stock.

Prices behave as a random walk, and that the best forecast of

stock Price, at least in the short runt is the Present Price

Cref.1L1. Note that the foregoing implies that the gain

should be set to 1.0, which corresponds to no filterino at

all# Therefore, Box and Jenkins a~parentlv found that some

filtering of the data was appropriate, even though the gain

thew used was nuite hih.
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V. SOME REFINEMENTS, EXTENSIONS AND ALTERNATIVES

A. ADAPTIVE FILTERING

In the linear Kalman filter, the gain is completelw

independent of the data. Clearly, this will result in major

errors if the gain is chosen inappropriately or if the data

statistics chanae. If the gain is too low, the filter lags

badly, In the extreme case, which occurs if the Process

noise covariance 0 is much too low, the filter Paws much too

much attention to the Past and diverges from the data. On

the other hand, if the Aain is too high, the filter Paws too

much attention to the data and the state estimate contains

noise# If the filter is a polynomial model and is to be used

as a predictor, the resulting errors will be spectacular.

The solution is simple in concept but can be difficult

to implement. One simply sets the steadv-state gain as low

as appropriate for the stable Process being estimated. In

target tracking, the gain would be set to track an airplane

flvina a straight Fath. A 'maneuver detector' or "trend

detector' is incorporated, which is nothing more than a

recursive statistical test applied to the residuals to

determine whether or not thev come from a zero-mean

distribution. If nott the bandwidth is araduallw widened

(gain is increased) until the residuals Pass the zero-mean

test. Then, the gain is allowed to decrease toward the

stable, steady-state value.
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Further details and some novel approaches are discussed

in Clark Cref.5]. Two examples taken from Clark are

illustrated in figure 26. The conceptual adaptive filter

discussed above reouires time to detect the maneuver or

trend, adapt to it, and reconverle to a stable gain setting.

the time renuired maq be unacceptablw long for some

applications.

Clark Proposes a dual-bandwidth adaptive filter to speed

adaptation. The Process is simultaneouslw tracked bv a

narrow-band and a wide-band filter. If a maneuver or trend

is detected, the state estimate of tie wide-band filter is

fed into the narrow-band filter. Ideally, this would allow

the narrow-band filter to Jump immediatelv to the current

(unbiased) estimate of the wide-band filter+ In Practicer

Clark found that some widening of the bandwidth of the

narrow-band filter was also reauired,

Voluminous literature exists on the subjecty much of it

verv difficult to read. Clark Eref.53 incorporates a

Particularlw lucid account of stabilitv Problems encountered,

methods of reducing the cost of false detection of bias,

analwtical methods of determining filter parameters, and

experimental results. Although Clark's filter was designed

to track and Predict the Position of airborne targets, the

methods discussed are adaptable to the filtering of economic

time series or virtualli anw other stochastic Process.
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B. NON-LINEAR FILTERING

In the non-linear Kalman filter, one or more of the

matrices Q, R, H, or • are allowed to var• with time. Since •

this results in a time-variation of the •ain matrix,

Quantitative ar.al•sis in the freQuenc• domain is no longer

aPProPriate. However, it is well to keep the concepts in mind

it: order to •air, additional insight. There are two basic
t•Pes of non-linearities that ma• arise; non-linear•

measurements and non-linear dunamics. Ni °
S1. Non-Linear Measurements

N• Non-linear measurements arise when observations are

made in one coordinate sustem and the model requires that •he

state be estimated in another coordinate s•stem. In this

case, the matrices R and H are time-var•in• •unctions of the

coordinate transformation, and do depend on the data, in the

sense that the• depend on the location of the data within the

coordinate s•stem. This twPe of non-linearit• is often eas•

to handle.

For the best e×amPle of non-linear measurements we must

return to the tar•et-trackir, Q model. Fire control swstems

S•enerall• trac• in azimuth, elevation, and range. However,

_,•,• the model i• a Pol•nomial in Cartesian coordinates, but not

in Polar coordinate•. AirPlanes often fl• a straight Path,

but seldom, i? ever, ?l• a constant bearinQ or range with

respect to the radar observer. In this nodel, the
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non-linearity can be reduced by considering the Cartesian

measurement error as a linear transformation of the Polar

measurement error. If the Polar measurement error is

Gaussian, the Cartesian measurement error is verv nearlw

Gaussian with covariance matrix R a function of the

coordinate transformation.

The Cartesian R matrix will not be diagonal, even if the

Polar R matrix is. However, Clark Eref.5] has found that

setting the off-diagonal terms of the Cartesian R matrix to

zero did not appreciablv degrade filter Performance. In this

wavy, he was able to decouple a nine-5tate filter into three

three-state filters.

If the measurement non-linearity is too severe, it mav

not be reasonable to assume that the noise is Gaussian.

However, limited experiments Performed on data with

non-Gaussian noise (an e:xPonential distribution was used)

showed that the Kalman smoother and the Gaussian smoother

were at.ite robust as long as the gain was not high. This

seems to be a conseouence of the Central Limit Theorem, since

low gain implies a linear combination of a fairlv large

number of data Points. It should be noted that a filter

designed to handle this situation is still linear, although

the Gaussian assumption is violated.

2. Non-Linear Dynamics

Non-linear dynamics are considerably harder to handle

than non-linear measurements. This is unfortunate, since the

areas of Potential application are numerous. Non-linear
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dynamics occur when the 0 or • matrices depend on the

Previous historv of the Process.

As a simple example, consider the multiple relression

model

Jv` W(t) = a %(t) + b xj(t) + w(t-1)

where v(t-1) correspcnds to the intercept term. In this

model, we wish to estimate the dependent variable w(t). To do

so, we need to estimate not onlv the independent variables

x/(t) and :(t), but also the rearession coefficients a and b0

Let us assume we can measure v(t), x,(t), and xjt), but not a

and b. Assuminr a first-order swstem, the state update

eauation is

't " t" t)"

V(t+1llt) I a(tt b(t~t) 0 0 •t

x(t+lt) 0 1 0 0 0 x,(tt)

;(t+Ht) = 0 0 1 0 0 (t :t)

a(t+l1t) 0 0 0 1 0 a(t t)

b(t+lt) 0 0 0 0 1 ht(tt)

Where the transition matrix is unfortunatelw not unique, The

first row of the transition matrix could be eauallw well

represented by

C 1 0 0 x~lt:t) -(tlt)3
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or even

C 1 a(t~t)/2 b(tit)/2 x1(t~t)/2 xX(tit)/2 3

arnd it obviously changes at everv iteration. It is at this

Point that filter design becomes an art,

Note that the independent variables arnd the regressiona

coefficients are assumed here to be first-order Gauss-Markov

Processes. Increasingly high orders would multiplv the state

space.

Several experimienits were run using a second-order model

similar to the above on the Box-Jenkins Cref#113 series M

data (sales data with leading indicator), Quantitative

results are not presented, because the Box-Jenkins data did

not include sufficient forecast estimates for comparisonr

some 'cheating' was done because the Box-Jenkins Parameters

were used in filter designp and it never became clear exactlii

what Parameters were appropriate for the R and 0 matrices+

However, some aualitative comments are appropriate. The

model did work. Some instability was noted in the regression]

Parameters* It became obvious that the gain on the

regression Parameters must be set verv low in comparison to

the gain on the independent variablest in order to keep the

* regression Parameter estimates from varvina faster than the

estimates of the independent variables# This implies

* cooingsmllvalues for the noise variance ofthe

regression Parameters* Also, bv keeping the gain fairlw low
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on the leading indicator, it was Possible to induce a Phase

lag that approximatelv cancelled the lead.

The reauirement to keep gain low in order to improve

stabilitv is evidentlv a conseouence of the increased degrees

of freedom# The more Parameters to be estimated, the more

degrees of freedom in the model+ High gain is anala~ous to

relativelv few data Points being used in regression. The

more variables we introduce into the model, the less gain we

are able to use.

It is indeed unfortunate that multiple regression is a

non-linear Problem when cast in a filter model. It would be

useful +o have a multiple regression model for which more

recent observations were weighted more heavilv than older

ones in determining the regression Parameters. No doubt the

innovative analwst could develop one to fit the specific

situation. However, clearlw-defined technioues with

demonstrated results are not available to the Practitioner.

The experts all have their favorite methods, and much of the

liter-ature is difficult to read, There is clearlv a need for

additional research in this area.

C. NON-PARAMETRIC FILTERING

We close our discussion with an interesting alternative

to conventional digital filtering techniaues,. Thereý are

those who are bothered bv the usuai distributional

assumptions made in anw application o? Psrametric statistics.

An extensive literature has Jeveloped in the field of
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non-parametric statistics, which is based on the PrinciPle

that distributional assumptions are avoided, or at least

weakened. A strong Point of non-parametric statistics is

relative insensitivity to extreme outliers. However, little

Progress has been made in the non-parametric analysis of time

series. An ex.ception maw be found in Tukew Cref.16], which

is Presented in a highlw intuitivn manner, with little or no

theoretical background.

One simple idea advanced bw Tukew is that of median

smoothing. The smoothed estimate • based on the median of

several adjacent data Points, rather than on a weighted

linear combination. rhe result is obviouslw a series of

steps, since adjacent data Points will often have the same

median. Tukev sus-ests several methods to restore some

curvature in the estimate. The a will not be developed here.

Tukew's methods would be relativelw hard to mechanize on a

computer, because the methodologw reauires extensive logical

rules.

Tukev's methods could be Pxtended to real-time filtering

Problems bw developing a non-parametric analog to the

recursive digital filter. Recall that the recursive digital

filter consists of a weighted linear combination of recent

data Points added to a weighted linear combination of recent

estimates. Th.! non-Parame'.ric filter estimate would simply

be the median of several recent data Points and several

recent, states. The idea is intuitivelw appealing and should

be the subject of future research. Discussion here will be

limitad to some of the more obvious traps that await the
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If such a filter were to be designed, the

impulse-response function would be meaningless, because the

median estimate would always be zero if the span of the

filter were greater than two* Nevertheless, a median filter

does have a frenuencv response, which in fact is a

Particularlv nastv one.

Consider a seven-point median smoother, where the state

estimate at time t is the median of the measurements made at

time (t-3) to time (t+3)# This is anala~ous to the

rectangular (Parametric) window discussed in Hamming Cref.7]#

The rectangular window weights all data Points within the

window eauallw. The median window obviouslv does the same#

As a result, we would expect the freauencw response of the

median window to have severe ripples as does that of the

rectangular window. We can see intuitivelw that this is true.

Since the span of our example median window is 7, the

freauencv response of anv freauencw that is a non-zero

integer multiple of 1/7 is obviouslw zero. The frenuencv

response at zero freauencs is one, since the zero freouency

implies a constant. The amplitude of the freouencw response

falls off to the first zero, then rises again. Successive

maxima decrease with increasing freauency, but the freauencw

response is always non-zero except at frenuencies that are

non-zero integer multiples of the reciprocal of the span of

the window. Thus, the non-parametric filter will need to

incorporate some (unsPecified) device to improve the

freauencv response.
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Two other difficulties are worthw of mention. First,

the sampling distribution of the median maw have a larger

variance than the sampling distribution of the mean. This

means that the Parametric filter maw -rovide a better

estimate than the non-Parametric filter if the assumptions on

which the Parametric 2_.ter is :,a•-d a, '. all reasonable.

Second, for the n- z filter a be useful, the

median must be a of interest. If it is assumed

that the distribu, etric, the median and ;'•n are,

of courser eaual. v.P?.w•t r_4 distribution is sii:

mean cannot be ceducea from the median unle rict

Parametric assumptions are imposed, which of course, override

the Justification for the non-Parametric filter in the first

Place* The idea is nevertheless intriguing, and should be

explored further.
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VI. SOME APPLICATIONS

The Kalman filter has been applied to Operations Research

and economic Problems with varving degrees of success.

McWhorter Cref,17] conducted an empirical studv of the Kalman

filter in which he compared it to several other methods of

time series forecasting. The results were mixed, with no

method dominating. The Kalman filter compared more favorablv

over a short term forecasting horizon than over a long term

one. Its Performance wasp not surprisingly, found to be

degraded if the structural model was seriouslv mis-specified.

McWhorter Pointed out some of the difficulties encountered in

building the model. In an economic context, it is often verv

difficult to specifv the noise covariance matrices R and O,

and even to identify the structure of the state transition

matrix . The assumptions made are often sweeping and

arbitrary, in contrast to tracking applications where the

noise Processes and especiallv the state transition model are

relativelv well understood.

A. INVENTORY MANAGEMENT

The Kalman filter is directlw applicable to inventory

management, and if ProPerld designed, should be superior Lo

the finite exponential smoothing model of Bessler and Zehna

[ref.14]. Downing, Pike, and Morrison Cref.18] designed a
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Kalman filter for the inventorv control of nuclear material.

The Paper is readable, and the filter is well-documented and

easv to understand. Thev use the concept of a control

vector, which has not been mentioned here. An interesting

Peculiaritv of the model is that one of the measurements is

onlw available once everv twentv iterations. The state

transition matrix is a simple material balance relation which

is obviouslw Quite accurate. Such a model could be expected

to Perform euite well.

B. ESTIMATING A MEAN FUNCTION

Although the Kalman filter was derived from an assumption

of stationaritv, we have seen that it can be Quite Powerful

in separating a time varving signal from noise. The examples

of section III were all essentiallv estimates of the

time-varving mean function of a stochastic Process. The

example Process was Gaussian with a constant variance. The

variance was the measurement noise? and so directlw

influenced the Aain* If variance were not constantp the

Performance of a non-adaptive filter would be degraded. If

the change in variance was great enouah, an adaptive filter

would be reeuired.

A good method of estimating a time-varvina mean function

could be applied in numerous areas, such as anv sort of

traffic or flow control Problem, Perhaps in aualitv control

of large-batch. or flow manufacturing processes, and anw

application where it is desirablp to detect a change in the
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Process. The sensitivitq of the filter is directly

adjustable by the modeller through the noise covariance

matrices 0 and R.

A Particularly useful application would be to the

estimation of the rate Parameter of a non-time-homogeneous

Poisson Process. If this can be done accurately, the Process

can be transformed to a stationary one Eref.6], which Areatl.

expands the number of analytic tools that can be used.

The Poisson Process is a counting Process in continuous

time, and to attempt to filter a string of interarrival time

data would violate the sampling theorem# The times of

arrival are the measurement times, and thev are most

certainly not made at eauallq spaced intervals. Instead, the

filter mav be designed to sample a counting Process. At

discrete intervals the filter would count the number of

arrivals since some arbitrary time origin. If the Process

were to continue for a long time, the time origin might

occasionally have to be reset to Prevent computer overflow.

It is eas' to see how this sampling Process could be

implemented even if the input data were actuallw arrival

instants in continuous time, The sampling interval should be

small enough that there is low Probability that more than one

arrival would occur during a given measurement interval*

Since the number of arrivals is monotone non-decreasing in M

time, a velocity or trend model would be appropriate. The

input data would consist of integers. The state estimates

would not# The non-integer estimate of number of arrivals up

to the current time would not be useful to us. However, the
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second element of the state vector, the velocity or trend,

would in fact be the filtered arrival rate estimate. Since

the Process is noisv and non-Gaussian, a verv low

steady-state gain is appropriate.

The time-varving Poisson Process cannot have constant

variance, since the mean and the variance are eaual. A low

arrival rate implies high variance in the Poisson Process,

which is eauivalent to high measurement noise, which reauires

low sain. A constant-lain filter would therefore be

relatively more sensitive at low arriv3l rates than at high

arrival rates. An adaptive filter could be easily designed

to use the inverse of the rate estimate as the measurement

noise variance estimate. Stability might reauire that the

adjustment of the measurement noise variance be itself a

filtering process, in which the incoming variance estimate is

regarded as data.

C. MULTIPLE REGRESSION

If the regression constants are assumed known (or

computed by other means) the design of an appropriate filter

is ouite straightforward, and Quality of estimation is

related directlw to the aualitw of the model. Note that the

velocitw filter is simply the regression of velocitv on

Position, where the slope Parameter is known to be one. If

the regression coefficients are assumed to varv in time, the

Problem becomes non-linear and is Quite complex*. Because of

the immense applicabilitv of this model, additional
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developmental work is indeed a fertile field for future

research#

D. SOME DESIGN CONSIDFRATIONS

In applications where the noise covariance matrices R and

O, and the swstem dynamic model (state transition matrixt 1)

are known or easilw estimated, design is straightforward

and has been successfullv accomplished while remaining in the

time domain. However, in applications where sweeping

assumptions are reouired, a freauency-domain analysis could

be verv helpful. Some guidelines are as follows:

1. Spectral Analysis of the Data

A spectral analysis of sample data will s what the

frenuencw response of the filter should be. The Fac: Fourier

Transform (FFT) Program available in most computer iibraries

is generallw easw to use. However, the FFT Programs

generallw require an exact Power of 2 for the number of data

Points. Hamming [ref*7] Points out some Pitfalls. Since

stationaritt is assumed, the data should be considered as a

rotating cylinder, and if the starting and ending values are

not similar, a discontinui 4 v will exist in the spectrum# The

data can be tapered and Padded with zeros, but exactlw the

best meth-od to accomplish this is unknown# Several methods

might be tried,

The main virtue of the FFT is its speed. It works well

on a long run of data. If the number of data Points is small
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(around a hundred) it might be effective to find (or write) a

less efficient, conventional discrete Fourier transform

Program, which would not renuire Padded, truncated, or

tapered data if the starting and ending values are similar#

If the FFT Program used does not reauire an exact Power of

two for the number of input data Points, it would be well to

find out whw not. The Program maw be doing the Padding and

tapering itself, and the analyst should be curious as to how.

4 The analvst should remember that the spectrum is computed

from the data, and it is therefore an estimate. If the run

of data is short, there will be considerable variance in the

estimate.

2. Freauencv Analysis of Proposed Models

The analyst maw test the effect of assumptions made

in designing the filter bv simplv obtaining an impulse

response of the filter and running it through an FFT,

Truncation and tapering is no Problem, because the impulse

response will approach zero with time* The Proper impulse

function is simplw a 1 followed bv 2 -1 zeros for a filter,

or a I in the middle of 2a -1 zeros for a smoother. If the

output of the FFT consists of real and imaginarw components,

it will be necessarw to compute amplitude and Phase.

3. AdJustini the Model

If the model dynamics seem adeauate but the bandwidth

is wrong, the analwst should bv now have some insight into

what adJustments to makký to the noise covariance matrices to
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trw to improve things. In a model of anv comple~xitv at ally

there are numerous Possible combinations# However, evena some

improvement over the initial assumptions will be benefic.ial,

We are not looking for theoretical elegancep we are looking

for Performance.

Perhaps the model dgnamics obviouslw call for a trend

filter or even a chanae-of-trend (acceleration) fiIltert but

the data is o'i-te noisiv. Consideration should be given to

lowering the order of the filter+ A verv low-gain veiucitvI

filter wtll not follow changes in trend well,. A hi~her-Aain

scalar riltr~i mav do so more effectivelyi although it will

lag a steady: trend. There are manw tradeoffst and we cannoT

achieve Perfection.

4. Testing the Model

The model should be tested on real or simulated data*

From here onr the modelling Process is the standard cwsclical

one, going back to earlier steps as necessarv until

satisfactorv Performance is achieved.

WE
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APPENDIX A. DERIVATIONS

1. SCALAR KALMAN FILTER

a. Recursive Formula for Kalman Gain

The covariance extrapolation eauation

P(t) = X (t-1) • + Q

reduces in the scalar case to

P(t) = z(t-1) + 0

Since

.K(t) = (t) HR"H

we maw write, for the scalar case,

7.(t-1) = K(t-1) R

Similarlw, since

K(t) PH C HFHT + R3

bv reducing to the scalar case and s6bstituting, we maw write

K(t) = K(t-1) R + 0 = K(t-1) + Q/R
Mt-1) R + 0 + R R(t-1) + Q/R + I

b. Stead.-State Kalman Gain

Rearranging the recursive gain eauation and letting

K(t) = K(t-1) = K

we see that

K + (O/R)K - Q/R = 0

Bw the nuadratic formula,

K=-Q+ -+0
-2R 1:4R R

We are obliged to take the larger root, since the smaller
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root wculd force the lain to be negative. We also observe the

inverse relationship

M + 0/2R) 0 /4R + /R

K' + (Q/R)K + 0a /4R~ 0 /4R + Q/R

K =(Q/R)(1-K)

Q/R K K/(1-K)

c. Transient Kalman Gain

Recall that the Kalman filter reouires a Prior state

estimate X(O) and a Prior estimate of covariance N(O). This

rectuirement can be avoided bis usinsi KM1 1, which allows

the initial state estimate to be ectual to the first

measurement. Recall that

K(t) 2 (t) NTR

Since K(1) ly1 then I(I) =R

d. Amplitude and Phase of Freaeunciv Respor-se

The freauencws response is

H(v) a aICb exp(-iv)Jt

since

thene

H(v) =a / 1-b exp(-iv)3 4

The amplitude sctuared is

2a
A =H(v) H(-v) =a /11-b exp(-iv)3 Cl-b exp(iv)3
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£Bs Euler's relation

A a / 11 + L-2b ces v3

A a! C(I.-b) + 2b(1-cos v03

recallinO that

Q/R K 101-K) =a2 lb

we maw write the amplitude as1

Av

The Phase anile is

8(v) =arctan Clm(v) /Re(v).3

whprie Im(v) arid Re(v) are the imaginarw and real Parts of

H(v), which maw be written

H(v) a El-b exp(iv)3
11-b e.-xP(-iv)Jlll-b ex-.P(iv)3

H(v) = a (l~fb cos v -ib sin v)

I + b'-2b cos v

which allows us tc write

8)(v) =arctari (-b sin v) / (1-b cos v03

The ari~le for maxcimum Phase shift occurs when

d8(v) = t2 - b cos v =0

dv I1+ b'-2b cosv

so that the maximum Phase shift 8(v)rnax occurs when

v =arccos b

and has a value of

8(v)max arctan ~-b sin(arccos b)

1-b cos(arccos b)

- rctan (-b/

95j



2. IMPULSE RESPONSE FUNCTIONS

The impulse--response of the scalar Kalman filter is

~(t) =abý t =0y1r2y,.

a. Impulse-response of Double Filter

9(t) =ab ab

= I•
9(t) = :abbab t b= a2 b"bh

1(t) = (t+1) a b"

b, Impulse-response of Scalar Kalman Smoother

9(t) = ab" ....

- tAbt2bNI-ab ab =a2~zb a bt

"9(t) = b (1-b4) = a b /(1+b)
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